Netpert:

A Network Performance Benchmark

Revision 2.1

Information Networks Division
Hewlett—Packard Company
February 15, 1996

Netperf: A Benchmark for Measuring Network Performance

Section 0. The Legal Stuff

Copyright (C 1993, 1994, 1995 Hew ett—Packard Conpany
ALL RI GHTS RESERVED.

The encl osed software and documention includes copyrighted works of
Hewl ett —Packard Co. For as long as you conply with the follow ng
limtations, you are hereby authorized to (i) use, reproduce, and
modi fy the software and documentation, and to (ii) distribute the
sof tware and docunentation, including nodifications, for
non—conmer ci al purposes only.

1. The encl osed software and docunentation is nade available at no
charge in order to advance the general devel opment of
hi gh—per f ormance networ ki ng products.

2. You may not del ete any copyright notices contained in the
software or docunentation. Al hard copies, and copies in
source code or object code form of the software or
docunent ati on (including nodifications) nust contain at |east
one of the copyright notices.

3. The encl osed software and docunentati on has not been subjected
to testing and quality control and is not a Hew ett—Packard Co.
product. At a future tine, Hew ett—Packard Co. may or may not
of fer a version of the software and docunentation as a product.

4. THE SOFTWARE AND DOCUMENTATION |I'S PROVI DED "AS | S”.
HEW.ETT-PACKARD COVMPANY DCES NOT WARRANT THAT THE USE
REPRODUCTI ON, MODI FI CATI ON OR DI STRI BUTI ON OF THE SOFTWARE OR
DOCUMENTATI ON W LL NOT I NFRINGE A THI RD PARTY' S | NTELLECTUAL
PROPERTY RI GHTS. HP DOES NOT WARRANT THAT THE SOFTWARE OR
DOCUMENTATI ON | S ERROR FREE. HP DI SCLAI M5 ALL WARRANTI ES,
EXPRESS AND | MPLI ED, W TH REGARD TO THE SOFTWARE AND THE
DOCUMENTATI ON. HP SPECI FI CALLY DI SCLAI M5 ALL WARRANTI ES OF
MERCHANTABI LI TY AND FI TNESS FOR A PARTI CULAR PURPCSE.

5. HEW.ETT-PACKARD COVPANY W LL NOT IN ANY EVENT BE LI ABLE FOR ANY
DI RECT, | NDI RECT, SPECI AL, | NCI DENTAL OR CONSEQUENTI AL DAMAGES
(1 NCLUDI NG LOST PROFI TS) RELATED TO ANY USE, REPRODUCTI ON
MODI FI CATI ON, OR DI STRI BUTI ON CF THE SOFTWARE OR DOCUMENTATI ON.

Netperf: Revision 2.1; Copyright © 1993-1995 Hewlett—Packard Company

Netperf: A Benchmark for Measuring Network Performance

Section 1. Introduction

Netperf is a benchmark that can be used to measure various aspects of networking perfor-
mance. Its primary focus is on bulk data transfer and request/response performance using ei-
ther TCP or UDP and the Berkeley Sockets interface. There are optional tests available to
measure the performance of DLPI, Unix Domain Sockets, the Fore ATM APIand the HP HiP-
PI LLA interface.

This tool is maintained and informally supported by the IND Networking Performance Team.
It is NOT supported via any of the normal Hewlett—Packard support channels. You are free
to make enhancements and modifications to this tool.

This document is organized (loosely) into several sections as follows:
e Section 1. is what you are reading right now.

* Section 2. describes how to get the netperf bits and how to set—up your system to run
netperf. It also describes a simple way to verify that the installation has been successful.

e Section 3. describes the design of netperf.
* Section 4. describes netperf’s bulk data transfer tests and their command line options.
e Section 5. describes netperf’s request—response tests and their command options.

e Section 6. describes some of the supporting test types of netperf and their command line
options.

* Section 7. provides a description of the global command—line options for netperf.
e Section 8. provides some examples of netperf usage.

e Section 9. lists the changes and fixes in this revision of netperf.

e Section 10. lists several known problems with this revision of netperf.

e Section 11. provides some troubleshooting assistance.

We thank you in advance for your comments, and hope that you find this tool useful.
The maintainers of netperf.

“How fast is it? It’s so fast, that ...” ;—)

Conventions and Definitions

You may not be familiar with some of the conventions and definitions used by this document.
Generally, items of particular importance, command line options, and commands will be in
boldface type. Filenames and command line items requiring user substitution will appear in
italicized type.

A sizespec is a one or two item list passed with a command line option that can set the value
of one or two netperf parameters. If you wish to set both parameters to separate values, items
should be separated by a comma — Eg “parm1,parm2”. If you wish to set the first parameter
without altering the value of the second, you should follow the first item with a comma — Eg
“parml,”. Likewise, precede the item with a comma if you wish to set only the second parame-
ter — Eg “,parm2”. An item without a comma will set both parameters. This last mode is the
one most frequently used.

Netperf: Revision 2.1; Copyright © 1993-1995 Hewlett—Packard Company

Netperf: A Benchmark for Measuring Network Performance

Netperf has two types of command line options. The first are global command line options.
They are essentially any option that is not tied to a particular test, or group of tests. An example
of a global command line option is the test type. The second options are test specific options.
These are options which are only applicable to a particular test. An example of a test specific
option would be the send socket buffer size for a TCP_STREAM test. Global command line
options are specified first, test specific second. They must be separated from each other by a
“——7" (two dashes). If you wish to give test specific options only, they must be preceded by
“——"_(EG ./netperf —— —m 1024)

Netperf: Revision 2.1; Copyright © 1993-1995 Hewlett—Packard Company 4

Netperf: A Benchmark for Measuring Network Performance

Section 2. Installing Netperf

Netperf primary form of distribution is source code. This is to allow installation on systems oth-
er than those to which the authors have access and thus the ability to create binaries. There
are two ways to install netperf. The first runs the netperf server program, netserver, as a child
of inetd, which requires that the installer of netperf be able to edit the files /etc/services and
Jetcfinetd.conf (or their equivalent). The second is to run netserver as a standalone daemon.
This second method does not require edit capabilities on /etc/services and /etc/inetd.conf. but
does mean that you must remember to run the netserver program explicitly. The second meth-
od is required for Windows N'T.

This manual assumes that those wishing to measure networking performance already know
how to use anonymous FTP.

Getting the netperf bits from the Internet

For those people connected to the Internet, netperf is available via WWW. If you are not con-
nected to the Internet such that you can use WWW, then you may be able to retrieve netperf
via FTP or an FTP mail server. If all else fails, you can send email to Netperf Request <net-
perf—request@netperf.cup.hp.com>.

If you have a WWW browser, you can retrieve netperf via the Netperf Page. It is located at The Netperf Page . Follow
the links from that page.

Netperf source bits are also available via anonymous FTP from ftp.cup.hp.com in the directory
dist/networking/benchmarks. You should use binary mode transfers when bringing over the bits
as you will be grabbing the latest copy of this document along with the netperf C source files.

NOTE: Older versions of netperf were available via anonymous FTP from col.hp.com under
the directory dist/networking/benchmarks/. Other servers on the Internet may have copies. The
“primary” place to go for netperf bits is ftp.cup.hp.com.

While the netperf source bits can be placed anywhere on the system, this manual will assume
that the source bits are placed in the directory /opt/netperf/src. Previous revisions of netperf
were assumed to be placed in /usr/etc/net_perf/src, but this has been changed to better empha-
size that netperf is not an official Hewlett—Packard product. You are free to place netperf
wherever you like, provided that you make the necessary modifications to the scripts.

Installing the bits

Once you have placed the netperf source bits onto the system, it is necessary to compile them
and perform some editing tasks. This section assumes that you have elected to install the
benchmark server, netserver, as a child of inetd.

The netperf distribution includes a makefile which assumes the existence of the directory /opt/
netperf. If you do not wish to have netperf installed there, it will be necessary for you to edit
the makefile. To assist in this process, obvious markers have been placed in the makefile to
indicate what must be changed. Also, some systems require different compile switches and li-
braries. For those systems where the requirements were known to the authors, comments have
been added to the makefile.

Netperf: Revision 2.1; Copyright © 1993-1995 Hewlett—Packard Company

Netperf: A Benchmark for Measuring Network Performance

Once the makefile is customized as needed, simply enter the command:
$ make install

from within the netperf source directory. The netperf executables will be compiled and copied
into /opt/netperf or the location specified in the makefile. Make will also copy the sample script
files into the same place and verify that they are set to be executable.

If you do not have root access, or do not wish to install netperf as a child of inetd, skip to the
subsection titled “Running netserver as a standalone Daemon.”

Now that the executables have been created, it is necessary to edit the /etc/services and /etc/in-
etd.conf files. If you have decided to keep the netperf executables someplace other than /opt/
netperf, alter these lines accordingly. This editing step generally requires root access.

Add this line to the /etc/services file:
netperf 12865/tcp
Then add this line to the /etc/inetd.conf file:
netperf stream tcp nowait root /opt/netperf/netserver netserver

Running as root is probably no longer required (It was used on older versions of netperf which
read from /dev/kmem) so if you are uncomfortable running netserver as root, you can pick
another id. Once the files have been edited, it is necessary to have inetd re—configure itself.
On an HP—-UX system, this is accomplished with the command:

$ /etc/inetd —c

On some systems it is possible to get inetd to re —configure itself by sending it a SIGHUP with
the kill(2) command:

$ kill —HUP <pid of inetd>

On other systems it might be necessary to kill and re—start the inet daemon. At this point, root
access is no longer needed and you can proceed to the verification step.

Verifying the bits

To verify the installation of netperf, simply execute the command
/opt/netperf/netperf

A TCP_STREAM test of 10 seconds duration should be performed over the loopback inter-
face.

Running netserver as a standalone Daemon

If you cannot install netperf as a child of inetd, you can run the netserver as a standalone dae-
mon. Simply execute netserver with the “—p <port number>" option and it will happily start
accepting requests on the port number you specify. If you specify a port number other than the
normal netperf port number, you should remember to also specify “—p <portnum>” as a
global command line option of netperf.

Netperf: Revision 2.1; Copyright © 1993-1995 Hewlett—Packard Company 6

Netperf: A Benchmark for Measuring Network Performance

Final Customization

The scripts provided with the netperf distribution are written with the assumption that netperf
is installed in /opt/netperf. If you have decided to install netperf in a different location, you will
need to edit each of the script files and alter this line:

NETHOME=/opt/netperf
or one like it, to be something like:
NETHOME=/my/netperf/location

Netperf: Revision 2.1; Copyright © 1993-1995 Hewlett—Packard Company

Netperf: A Benchmark for Measuring Network Performance

Section 3. The Design of Netperf

Design Basics

Netperf is designed around the basic client—server model. There are two executables — net-
perf and netserver. Generally you will only execute the netperf program — the netserver pro-
gram will be invoked by the other system’s inetd.

When you execute netperf, the first thing that will happen is the establishment of a control con-
nection to the remote system. This connection will be used to pass test configuration informa-
tion and results to and from the remote system. Regardless of the type of test being run, the
control connection will be a TCP connection using BSD sockets.

Once the control connection is up and the configuration information has been passed, a sepa-
rate connection will be opened for the measurement itself using the APIs and protocols ap-
propriate for the test. The test will be performed, and the results will be displayed.

Netperf places no traffic on the control connection while a test is in progress. Certain TCP op-
tions, such as SO_KEEPALIVE, if set as your system’s default, may put packets out on the con-
trol connection.

CPU Utilization

CPU utilization is a frequently requested metric of networking performance. Unfortunately,
it can also be one of the most difficult metrics to measure accurately. Netperf is designed to
use one of several (perhaps platform dependent) CPU utilization measurement schemes. De-
pending on the CPU utilization measurement technique used, a unique single —letter code will
be included in the CPU portion of the test banner for both the local and remote systems.

The default CPU measurement technique is based on the use of “loopers” which will sit in tight
little loops consuming any CPU left over by the networking. This method is not without its add-
ed overhead, but wherever possible, care has been taken to keep that overhead to a minimum.
If you would like to get an estimate of the overhead, run one test with CPU utilization, and one
test without, and compare the throughputs. Use of loopers in measuring CPU utilization is in-
dicated by the letter code “L.”

NOTE: For accurate CPU utilization on MP systems, it is *crucial* that netperf and netserver
know the number of processors on the system. For some systems (HP—UX) this can be deter-
mined programmatically. Other systems require the use of the “—n” global command line ar-
gument.

HP-UX 10.X offers a zero additional overhead, very accurate CPU utilization mechanism
based on the pstat() system call. If you are compiling on HP—UX 10, you should replace the
“—~DUSE_LOOPER?” in the makefile with “~DUSE_PSTAT” and recompile. When this
method is being used, the letter code “I” will be displayed.

Other codes may be included in later versions of netperf. When the CPU utilization mecha-
nism is unknown, either a “U” or a “?” will be displayed.

Great care should be exercised when looking at CPU utilization. Be certain you are familiar
with the technique being used, and its implications. For example, a mechanism that is based
solely on CPU charged to the netperf (netserver) process alone will likely under—report the
real CPU utilization SIGNIFICANTLY. Much network processing takes place away from the
user process context. Caveat Benchmarker!

Netperf: Revision 2.1; Copyright © 1993-1995 Hewlett—Packard Company 8

Netperf: A Benchmark for Measuring Network Performance

Section 4. Using Netperf to measure bulk data transfer performance

The most common use of netperf is measuring bulk data transfer performance. This is also re-
ferred to as “stream” or “unidirectional stream” performance. Essentially, these tests will
measure how fast one system can send data to another and/or how fast that other system can
receive it.

TCP Stream Performance

The TCP stream performance test is the default test type for the netperf program. The simplest
test is performed by entering the command:

/opt/netperf/netperf —H remotehost

which will perform a 10 second test between the local system and the system identified by remo-
tehost. The socket buffers on either end will be sized according to the systems’ default and all
TCP options (e.g. TCP_NODELAY) will be at their default settings.

To assist in measuring TCP stream performance, two script files are provided with the netperf
distribution. They are tcp_stream_script and tcp_range_script. Tep_stream_script will invoke
netperf based on the setting of script variables controlling socket and send sizes.
Tep _range script will perform a similar set of tests, with the difference being that where
tcp_stream_script tests specific datapoints, tcp_range script will perform tests at points within
a specified range.

If you would like to perform tests other than those done by the scripts, you can invoke netperf
manually. Some of the options you will likely want to experiment with are:

—S sizespec which will set the local send and receive socket buffer sizes to the
value(s) specified. [Default: system default socket buffer sizes]

—S sizespec which behaves just like —s but for the remote system

—m value set the local send size to value bytes. [Default: local socket buffer
size]

—M value which behaves like —m, setting the receive size for the remote
system. [Default: remote receive socket buffer size]

-1 value set the test length to value seconds when value is > 0 and to |val-
ue| bytes when value is < 0

-D set the TCP_NODELAY option to true on both systems

This is not a complete list of options that can affect TCP stream performance, but it does cover
those options that are used most often. A complete list of netperf options can be found in Sec-
tion 7.

Netperf: Revision 2.1; Copyright © 1993-1995 Hewlett—Packard Company

Netperf: A Benchmark for Measuring Network Performance

XTI TCP Stream Performance

The XTI TCP stream performance test quite similar to the TCP_STREAM test. XTI requires
adevice file be opened — as the device file is placed in different locations on different systems,
it generally must be specified. The simplest XTI TCP stream test on HP—UX is performed
by entering the command:

/opt/netperf/netperf —H remotehost —t XTI_TCP_STREAM —— —X /dev/inet_cots

which will perform a 10 second test between the local system and the system identified by remo-
tehost. The socket buffers on either end will be sized according to the systems’ default and all
TCP options (e.g. TCP_NODELAY) will be at their default settings.

The test parameters foran XTI TCP_STREAM test are the same asforaTCP_STREAM test
with the addition of:

—X devspec set the local/remote XTI device file name from devspec.

UDP Stream Performance

A UDP stream performance test is very similar to a TCP stream test. One difference is that
the send size cannot be larger than the smaller of the local and remote socket buffer sizes.
What this means is that you must make certain that when you specify the —m option, you use
a value that is less than or equal to the socket buffer sizes (—s and —S). Also, since the UDP
Stream test is not the default test, the —t festname option must be specified, with the testname
set to UDP_STREAM. So, a simple UDP stream test command might look something like
this:

$ /opt/netperf/netperf —H remotehost —t UDP_STREAM —— —m 1024

There is a script provided that performs various UDP stream performance tests. It is called
udp_stream_script. As with TCP stream performance, you can use the script provided, or per-
form tests yourself to get datapoints not covered by the script.

NOTE: UDP is an unreliable protocol. It is important that you examine the results carefully
as the reported send rate can be much higher than the actual receive rate. Great care should
be taken when reporting UDP_STREAM test results to make sure they are not misleading.
For example, one should always report both send and receive rates together for a
UDP_STREAM test. If you are going to report a single number, you should report the receive
rate.

NOTE: If you would like to “pace” the send rate of the UDP_STREAM test, add a —DIN-
TERVALS to the makefile, do a “make clean” and re—compile. You can then use the —b and
—w global options to set the burst size (sends) and wait time (milliseconds) respectively.

XTI UDP Stream Performance

The XTI UDP stream performance test quite similar to the UDP_STREAM test. XTI requires
a device file be opened. As the device file is placed in different locations on different systems,
it generally must be specified. The simplest XTT UDP stream test on HP—UX is performed
by entering the command:

/opt/netperf/netperf —H remotehost —t XTI UDP_STREAM —— —X/dev/inet_clts

The test parameters for an XTI_UDP_STREAM test are the same as for a UDP_STREAM
test with the addition of:

Netperf: Revision 2.1; Copyright © 1993-1995 Hewlett—Packard Company 10

Netperf: A Benchmark for Measuring Network Performance

—X devspec set the local/remote XTI device file name from devspec.

NOTE: UDP is an unreliable protocol. It is important that you examine the results carefully
as the reported send rate can be much higher than the actual receive rate. Great care should
be taken when reporting XTI UDP_STREAM test results to make sure they are not mislead-
ing. For example, one should always report both send and receive rates together for a
XTI _UDP_STREAM test. If you are going to report a single number, you should report the
receive rate.

NOTE: If you would like to “pace” the send rate of the XTI UDP_STREAM test, add a
—DINTERVALS to the makefile, do a “make clean” and re—compile. You can then use the
—band —w global options to set the burst size (sends) and wait time (milliseconds) respective-

ly.
DLPI Connection Oriented Stream Performance

NOTE: DLPI tests are not compiled —in by default with netperf. If you wish to measure perfor-
mance over DLPI, you will need to add a —DDO_DLPI to the makefile and perhaps add to
the “LIBS=" and re—compile netperf and netserver.

A DLPI Connection Oriented Stream test (DLCO_STREAM) looks very similar to a TCP
Stream test — they both use reliable, connection oriented protocols. The DLPI test differs
from the TCP test in that the message size must always be less than or equal to the local inter-
face’s MTU — DLPI does not provide TCP—style segmentation and reassembly.

The simplest DLPI Connection Oriented Stream test would look something like this:
$ /opt/metperf/netperf —H remotehost —t DLCO_STREAM —— —m 1024
Here are some of the DLPI—specific command line options:

—D devspec specify the local and/or remote DLPI device file name(s) (fully—
qualified). Syntax is the same as that of a sizespec.

—m value specify the send size, in bytes, for the local system. This must be
less than or equal to the link MTU.

—M value which behaves like —m, setting the receive size for the remote
system.

—p ppaspec set the local and/or remote DLPI PPA(s). Syntax is the same as
that of a sizespec.

—1r value specify the request size, in bytes, for the test.

—R value specify the response size, in bytes, for the test.

—s value specify the 802.2 SAP for the test. This should not conflict with
any assigned SAP’s.

—W sizespec specify the local send/recv window sizes in frames (where avail-
able).

—W sizespec specify the remote send/recv window sizes in frames (where avail-
able).

Netperf: Revision 2.1; Copyright © 1993-1995 Hewlett—Packard Company 1

Netperf: A Benchmark for Measuring Network Performance

DLPI Connectionless Stream

NOTE: DLPItests are not compiled —in by default with netperf. If you wish to measure perfor-
mance over DLPI, you will need to add a —DDO_DLPI to the makefile and perhaps add to
the “LIBS=" and re—compile netperf and netserver.

A DLPI Connectionless Stream test (DLCL_STREAM) is analogous to a UDP_STREAM
test. They both make use of unreliable, connectionless transports. The DLPI test differs from
the UDP test in that the message size must always be less than or equal to the link MTU —
DLPI does not provide IP—like segmentation and reassembly functionality, and the netperf
benchmark does not presume to provide one.

The simplest DLPI Connectionless Stream test command line would look something like this:
$ /opt/metperf/netperf —H remotehost —t DLCL_ STREAM —— —m 1024
Here are some of the DLPI—specific command line options for the DLCL._STREAM test:

—D devspec specify the local and/or remote DLPI device file name(s) (fully—
qualified). Syntax is the same as that of a sizespec.

—m value specify the send size, in bytes, for the local system. This must be
less than or equal to the link MTU.

—M value which behaves like —m, setting the receive size for the remote
system.

—p ppaspec set the local and/or remote DLPI PPA(s). Syntax is the same as
that of a sizespec.

—s value specify the 802.2 SAP for the test. This should not conflict with
any assigned SAP’s.

—W sizespec specify the local send/recv window sizes in frames (where avail-
able).

—W sizespec specify the remote send/recv window sizes in frames (where avail-
able).

Unix Domain Stream Sockets

NOTE: Unix Domain Socket tests are not compiled into netperf by default. If you wish to mea-
sure the performance of Unix Domain Sockets, you must recompile netperf and netserver with
—DDO_UNIX added to the makefile.

A Unix Domain Stream Socket Stream test (STREAM_STREAM) is very much like a
TCP_STREAM test.

The Simplest Unix Domain Stream Socket Stream test command line would look something
like this:

$ /opt/netperf/netperf —t STREAM_STREAM

The —H global command line Option is not valid for a Unix Domain Socket test and should
not be specified.

Here are some of the Unix Domain—specific command line options for the
STREAM_STREAM test:

Netperf: Revision 2.1; Copyright © 1993-1995 Hewlett—Packard Company 12

Netperf: A Benchmark for Measuring Network Performance

—m value set the local send size to value bytes. [Default: local socket buffer
size]
—M value which behaves like —m, setting the receive size for the remote

system. [Default: remote receive socket buffer size]

—p dirspec set the directory where pipes will be created. [Default: system de-
fault for the tempnam() call]

—s sizespec which will set the local send and receive socket buffer sizes to the
value(s) specified. [Default: system default socket buffer sizes]

—S sizespec which behaves just like —s but for the remote system

Unix Domain Datagram Sockets

NOTE: Unix Domain Socket tests are not compiled into netperf by default. If you wish to mea-
sure the performance of Unix Domain Sockets, you must recompile netperf and netserver with
—DDO_UNIX added to the makefile.

A Unix Domain Datagram Socket Stream test (DG_STREAM) is very much like a
TCP_STREAM test except that message boundaries are preserved.
The Simplest Unix Domain Datagram Socket Stream test command line would look some-
thing like this:

$ /opt/netperf/netperf —t DG_STREAM
The —H global command line option is not valid for a Unix Domain Socket test and should

not be specified. Here are some of the test specific command line options available in a
DG_STREAM test.

—m value set the local send size to value bytes. [Default: local socket buffer
size]
—M value which behaves like —m, setting the receive size for the remote

system. [Default: remote receive socket buffer size]

—p dirspec set the directory where pipes will be created. [Default: system de-
fault for the tempnam() call]

—Ss sizespec which will set the local send and receive socket buffer sizes to the
value(s) specified. [Default: system default socket buffer sizes]

=S sizespec which behaves just like —s but for the remote system

Fore ATM API Stream

NOTE: Fore ATM API tests are not compiled into netperf by default. If you wish to measure
the performance of connections over the Fore ATM API, you must recompile netperf and net-
server with —DDO_FORE added to the makefile.

A Fore ATM API Stream test (FORE_STREAM) is very much like a UDP_STREAM test.

NOTE: The Fore ATM API exports an unreliable protocol. It is important that you examine
the results carefully as the reported send rate can be much higher than the actual receive rate.
Great care should be taken when reporting FORE_STREAM test results to make sure they
are not misleading. For example, one should always report both send and receive rates togeth-
er fora FORE_STREAM test. If you are going to report a single number, you should report
the receive rate.

Netperf: Revision 2.1; Copyright © 1993-1995 Hewlett—Packard Company 3

Netperf: A Benchmark for Measuring Network Performance

The simplest Fore ATM API Stream test command line would look something like this:

$ /opt/netperf/netperf —t FORE_STREAM —H remotehost
Here are some of the test specific command line options applicable to a FORE _STREAM

test.
—a AAL

—b sizespec

—d devspec
—m value
—M value

—p sizespec

—P sizespec

use the ATM Adaptation Layer number aal to encapsulate pack-
ets. Specifying 3 or 4 will yield AAL3/4, and 5 will yield AALS.
[Default: 5 —> AALS]

set the mean burst target and/or minimum in units of kilobit pack-
ets. The first value is target and the second is minimum. [Default:
0,0]

set the name of the ATM device file to be opened. [Default: /dev/
atm]

set the local send size to value bytes. This must not be larger than
the ATM MTU. [Default: ATM MTU]

which behaves like —m, setting the receive size for the remote
system. [Default: ATM MTU]

set the peak bandwidth target and/or minimum in units of kilo-
bits/s. The first value is target and the second it minimum. [De-
fault: 0,0 —> network assigned]

set the mean bandwidth target and/or minimum in units of kilo-
bits/s. The first value is target and the second is minimum. [De-
fault: 0,0 —> network assigned]

Netperf: Revision 2.1; Copyright © 1993-1995 Hewlett—Packard Company

14

Netperf: A Benchmark for Measuring Network Performance

Section 5. Using Netperf to measure request/response performance

Request/response performance is the second area that can be investigated with netperf. Gen-
erally speaking, netperfrequest/response performance is quoted as “transactions/s” for a given
request and response size. A transaction is defined as the exchange of a single request and a
single response. From a transaction rate, one can infer one way and round —trip average laten-

cy.
TCP Request/Response Performance

The TCP request/response test can be invoked with netperf though the use of the —t option
with an argument of TCP_RR. So, a “default” request/response command would look some-
thing like this:

$ /opt/metperf/netperf —H remotehost —t TCP_RR

and will use the system default socket buffer sizes, a default request size of 1 byte, and a default
response size of 1 byte.

As with the stream performance tests, a script is available to assist you in generating TCP re-
quest/response performance numbers. It is called tcp_rr_script. However, if you should need
to generate numbers at points of you own choosing, these command line options will be of use:

—1 sizespec set the request and/or response sizes based on sizespec.

—1 value set the test duration based on value. For value > 0, test duration
will be value seconds. Otherwise, test duration will be |value |
transactions.

—s sizespec which will set the local send and receive socket buffer sizes to the
value(s) specified. [Default: system default socket buffer sizes]

—S sizespec which behaves just like —s but for the remote system

-D set the TCP_NODELAY option to true on both systems

The request and response sizes will be the buffer sizes posted to send and receive. The —m and
—M options are not meaningful for a TCP_RR test.. As TCP is a stream protocol and not a
message protocol, it is necessary to loop on receives until the entire message is delivered. The
buffer pointer passed to the first receive for an individual transaction will be aligned and offset
as requested by the user. It will be incremented by the number of bytes received each time until
the entire request/response is received. The buffer pointer will be re—aligned and offset for
the next transaction.

TCP Connect/Request/Response

The TCP_CRR test is a test which mimics the http protocol used by most web servers. Instead
of simply measuring the performance of request/response in the same connection, it estab-
lishes a new connection for each request/response pair. The test—specific parameters are the
same as the TCP_RR test, with one addition:

—p max[,min] set min/max port numbers used by the client side.

Netperf: Revision 2.1; Copyright © 1993-1995 Hewlett—Packard Company 15

Netperf: A Benchmark for Measuring Network Performance

It is important that this test run for a reasonable length of time — at least two minutes. This
is related to the behavior of various TCP implementations. If you run the test for shorter peri-
ods of time, the results could be higher than seen in a steady—state condition. So, a good
TCP_CRR command line to simulate a web—server might look like:

$ /opt/metperf/netperf —t TCP_CRR —1120 —H remotehost —— —r 32,1024

XTI TCP Request/Response Performance

The XTI TCP request/response test can be invoked with netperf though the use of the —t op-
tion with an argument of XTI_TCP_RR. Not all systems put the requisite device files in the
same location, so, a “default” request/response command on HP—UX would look something
like this:

$ /opt/metperf/netperf —H remotehost —t XTI TCP_RR —— =X /dev/inet_cots

and will use the system default socket buffer sizes, a default request size of 1 byte, and a default
response size of 1 byte.

The command—line options for the XTI TCP_RR test are the same as the TCP_RR test, with
the following additions:

—X devspec set the local/remote XTI device file name from devspec.

The request and response sizes will be the buffer sizes posted to send and receive. As TCP is
astream protocol and not a message protocol, it is necessary to loop on receives until the entire
message is delivered. The buffer pointer passed to the first receive for an individual transaction
will be aligned and offset as requested by the user. It will be incremented by the number of
bytes received each time until the entire request/response is received. The buffer pointer will
be re—aligned and offset for the next transaction.

UDP Request/Response Performance

UDP request/response performance works just like TCP request/response performance. All
the options available there are present here with the exception of the —D option; TCP_NO-
DELAY has no meaning for a UDP test. To invoke a UDP request/response test, use an argu-
ment of UDP_RR with the —t option to produce a command like something like this:

$ /opt/metperf/netperf —H remotehost —t UDP_RR

Again, a script is provided which will generate results for some of the more common data-
points. It is named udp_rr_script.

XTI UDP Request/Response Performance

The XTI UDP request/response test can be invoked with netperf though the use of the —t op-
tion with an argument of XTI _UDP_RR. Not all systems put the requisite device files in the
same location, so, a “default” request/response command on HP—UX would look something
like this:

$ /opt/netperf/netperf —H remotehost —t XTI_UDP_RR —— —X/dev/inet_clts

and will use the system default socket buffer sizes, a default request size of 1 byte, and a default
response size of 1 byte.

Netperf: Revision 2.1; Copyright © 1993-1995 Hewlett—Packard Company 16

Netperf: A Benchmark for Measuring Network Performance

The command—line options for the XTI_UDP_RR test are the same as the UDP_RR test,
with the following additions:

—X devspec set the local/remote XTI device file name from devspec.

The request and response sizes will be the buffer sizes posted to send and receive.

DLPI Connection Oriented Request/Response Performance

NOTE: DLPI tests are not compiled into netperf by default. If you wish to measure the perfor-
mance of DLPI, you must recompile netperf and netserver with —DDO_DLPI added to the
makefile.

A DLPI Connection Oriented Request/Response test (DLCO_RR) looks much the same as
any other request/response test. It performs a request/response test over a reliable connection.
As with the other DLPI tests, there is no segmentation and reassembly, so all request and/or
response sizes must be less than or equal to the link MTU.

A simple DLCO_RR test invocation would look something like this:
$ /opt/metperf/netperf —H remotehost —t DLCO_RR
Here are some of the DLPI—specific command line options:

—D devspec specify the local and/or remote DLPI device file name(s) (fully—
qualified). Syntax is the same as that of a sizespec.

—p ppaspec set the local and/or remote DLPI PPA(s). Syntax is the same as
that of a sizespec.

—1 Ssizespec specify the request and/or response sizes, in bytes, for the test.

—s value specify the 802.2 SAP for the test. This should not conflict with
any assigned SAP’s.

—W sizespec specify the local send/recv window sizes in frames (where avail-
able).

—W sizespec specify the remote send/recv window sizes in frames (where avail-
able).

DLPI Connectionless Request/Response Performance

NOTE: DLPI tests are not compiled into netperf by default. If you wish to measure the perfor-
mance of DLPI, you must recompile netperf and netserver with —DDO_DLPI added to the
makefile.

A DLPI Connectionless Request/Response test (DLCL_RR) looks much the same as any oth-
er request/response test. It performs a request/response test over an unreliable connection.
However, netperf does not have any sort of retransmission mechanism, so packet loss with this
test will result in dramatically lowered performance results. Aswith the other DLPI tests, there
is no segmentation and reassembly, so all request and/or response sizes must be less than or
equal to the link MTU.

A simple DLCL_RR test invocation would look something like this:
$ /opt/metperf/netperf —H remotehost —t DLCL_RR

Here are some of the DLPI—specific command line options:

Netperf: Revision 2.1; Copyright © 1993-1995 Hewlett—Packard Company 17

Netperf: A Benchmark for Measuring Network Performance

—D devspec specify the local and/or remote DLPI device file name(s) (fully—
qualified). Syntax is the same as that of a sizespec.

—p ppaspec set the local and/or remote DLPI PPA(s). Syntax is the same as
that of a sizespec.

—1 Ssizespec specify the request and/or response sizes, in bytes, for the test.

—s value specify the 802.2 SAP for the test. This should not conflict with
any assigned SAP’s.

—W sizespec specify the local send/recv window sizes in frames (where avail-
able).

—W sizespec specify the remote send/recv window sizes in frames (where avail-
able).

Unix Domain Stream Socket Request/Response Performance

NOTE: Unix Domain Socket tests are not compiled into netperf by default. If you wish to mea-
sure the performance of Unix Domain Sockets, you must recompile netperf and netserver with
—DDO_UNIX added to the makefile.

A Unix Domain Stream Socket Request/Response test (STREAM_RR) is very much like a
TCP_RR test.

The STREAM_RR test command line would look something like this:
$ /opt/netperf/netperf —t STREAM_RR

The —H global command line option is not valid for a Unix Domain Socket test and should
not be specified.

Here are some of the Unix Domain—specific command line options for the
STREAM_STREAM test:

—p dirspec set the directory where pipes will be created. [Default: system de-
fault for the tempnam() call]

—I sizespec which will set the request and response sizes to the value(s) speci-
fied. [Default: 1 byte]

Unix Domain Datagram Socket Request/Response Performance

NOTE: Unix Domain Socket tests are not compiled into netperf by default. If you wish to mea-
sure the performance of Unix Domain Sockets, you must recompile netperf and netserver with
—DDO_UNIX added to the makefile.

The Simplest Unix Domain Datagram Socket Request/Response (DG_RR) test command
line would look something like this:

$ /opt/netperf/netperf —t DG_STREAM

The —H global command line option is not valid for a Unix Domain Socket test and should

not be specified. Here are some of the test specific command line options available in a
DG_STREAM test.

Netperf: Revision 2.1; Copyright © 1993-1995 Hewlett—Packard Company 18

Netperf: A Benchmark for Measuring Network Performance

—p dirspec

—r sizespec

set the directory where pipes will be created. [Default: system de-
fault for the tempnam() call]

set the request and/or response sizes to the value(s) specified.
[Default: 1 byte]

Fore ATM API Request/Response Performance

NOTE: Fore ATM API tests are not compiled into netperf by default. If you wish to measure
the performance of connections over the Fore ATM API, you must recompile netperf and net-
server with —DDO_FORE added to the makefile.

A Fore ATM API Request/Response test (FORE_RR) is very much like a UDP_RR test.

The simplest FORE_RR test command line would look something like this:
$ /opt/netperf/netperf —t FORE_RR —H remotehost
Here are some of the test specific command line options applicable to a FORE_STREAM

test.

—a aal

—b sizespec

—d devspec

—p sizespec

—P sizespec

—r Ssizespec

use the ATM Adaptation Layer number aal to encapsulate pack-
ets. Specifying 3 or 4 will yield AAL3/4, and 5 will yield AALS.
[Default: 5 —> AALS]

set the mean burst target and/or minimum in units of kilobit pack-
ets. The first value is target and the second is minimum. [Default:
0,0]

set the name of the ATM device file to be opened. [Default: /dev/
atm]

set the peak bandwidth target and/or minimum in units of kilo-
bits/s. The first value is target and the second it minimum. [De-
fault: 0,0 —> network assigned]

set the mean bandwidth target and/or minimum in units of kilo-
bits/s. The first value is target and the second is minimum. [De-
fault: 0,0 —> network assigned]

set the request and/or response sizes to the values specified [De-
fault: 1 byte]

Netperf: Revision 2.1; Copyright © 1993-1995 Hewlett—Packard Company

19

Netperf: A Benchmark for Measuring Network Performance

Section 6. Other Netperf tests

Apart from the usual performance tests, netperf contains some tests that can be used to
streamline measurements. These tests range from CPU rate calibration (present) to host iden-
tification (future enhancement).

CPU rate calibration

NOTE: Previous revisions of the manual may have discussed the HP kernel idle counter. With
the release of HP—UX 10.0, this mechanism has been replaced with an equally accurate one
based on information returned from the pstat() system call. This accurate pstat—based mecha-
nism is *not* available in HP—UX 9.X, nor in non—HP operating systems. For those systems,
a CPU utilization measurement based on the use of “loopers” is employed. Each requires cal-
ibration.

In the context of netperf, a CPU rate is expressed not in clock frequencies, MIPS or MFLOPS,
but simply how fast the system can count. There are two CPU rate calibrations tests. The first
measures and displays the CPU rate for the local system. It is called LOC_CPU. The second
test, REM_CPU, is exactly the same, except that it works on the system specified with the —H
command line option.

In and of themselves, these two tests are only arcanely interesting. However, they can be used
to greatly speed—up test scripts. Remember that for CPU measurements, it is necessary to
“calibrate” the CPU or determine how fast it can count. This process takes at least forty (40)
seconds for the local system and forty (40) seconds for the remote system. One can save the
results of the CPU tests in shell variables and then use them as arguments to the —c and —C
command line options. Passing—in a rate with the —c or —C option tells netperf that you al-
ready know the CPU rate, so it can skip the calibration steps. For example, the following Unix
shell fragment will determine the local CPU rate and use that for subsequent tests:

$ LOC_RATE=¢‘/opt/netperf/netperf —t LOC_CPU*
$ /opt/metperf/netperf —H somehost —c $SLOC_RATE

You should remember that CPU rates will vary from system to system. Generally, the best
trade —off between time and accuracy is to perform the calibrations once in each script or ses-
sion. The default scripts provided will use the LOC_CPU and REM_CPU tests to reduce the
time overhead of CPU calibration.

NOTE: For accurate CPU utilization on MP systems, it is *crucial* that netperf and netserver
know the number of processors on the system. For some systems (HP —UX) this can be deter-
mined programmatically. Other systems require the use of the “—n” global command line ar-
gument. The authors are always looking for supported calls to find the number of active proces-
sors in a system.

Netperf: Revision 2.1; Copyright © 1993-1995 Hewlett—Packard Company 20

Netperf: A Benchmark for Measuring Network Performance

Section 7. Netperf Command—line Options Reference

This section describes each of the global command—line options available in the netperf pro-
gram. Essentially, it is an expanded version of the usage information displayed by netperf when
invoked with the —h option in global command line option area.

Command—line Options Syntax

Revision 1.8 of netperf introduced enough new functionality to overrun the English alphabet
for mnemonic command line option names. For this reason, command —line options were split
in Revision 1.8. This split remains in Revision 1.9alpha. There are two types of netperf com-
mand—line options. They are “global” and “test—specific.” Both types are entered on the
same command line, but they must be separated by a “——" for correct parsing. Global com-
mand line options come first, followed by test—specific. If only test—specific options are to be
specified, they must be preceded by “——" or the results will be undefined.

Global Options

—a sizespec This option allows you to alter the send and receive buffer align-
ments on the local system. Changing the alignment of the buffers
can force the system to use different copying schemes, which can
have a measurable impact on performance. If the page size for
the system was 4096 bytes, and you wanted to pass page aligned
buffers beginning on page boundaries, you could use “—a 4096”.
The units for this option are whole bytes. [Default: 8 bytes]

—A sizespec This option is identical to the —a option with the exception that
the alignments are altered for the remote system.

—b size This option (—=DINTERVALS compilation only) sets the size of
aburst of packetsina STREAM test. This can be used to “pace”
the send rate when there is no flow—control provided by the pro-
tocol being measured.

—c [rate] This option will request CPU utilization and service demand cal-
culations for the local system. If the optional rate parameter is
specified, netperf will use that instead of calculating the rate it-
self. For more information on CPU utilization measurements
with netperf, please consult Section 3. [Default: no CPU mea-
surements]

—C [rate] This option is identical to the —c option with the exception that
it requests CPU utilization for the remote system.

—d This option will increase the quantity of debugging output dis-
played during a test. If debugging is set high enough, it may have
a measurable impact on performance. Debugging information
for the local system (the one running netperf) is printed to stdout.
Debugging information for the remote system (the one running
netserver) is sent to the file /tmp/netperf.debug [Default: no de-

bugging]

Netperf: Revision 2.1; Copyright © 1993-1995 Hewlett—Packard Company 71

Netperf: A Benchmark for Measuring Network Performance

—f GMKgmk

— remotehost

—1 testlen

—n value

—0 si espec

— si espec

—p portnum

This option can be used to change the units of measure for stream
tests. The “G”, “M”, and “K” arguments will set the output units
to 230,220 and 210 bytes/s respectively. The “g”, “m”, and “k” ar-
guments will set the output units to 10, 105, and 103 bits/s respec-
tively. [Default: m — 10° bits/s)]

This option causes netperf to display its usage string and e it.

This option sets the name of the remote system. t can be speci-
fied as either a hostname e.g. foo.bar.ba)oran address e.g.
1.2. .). [Default: localhost]

ith this option you can control the length of the test. fyou spec-
ify a positive value for testlen, the test will run for that many se-
conds. fyou specify a negative value, the test will run for that
many transactions for are uest/response test, or that many bytes
for a stream test. ome tests can only be timed. [Default: 10 se-
conds]

The value passed—in will be used as the number of sin the
system for the purposes of utili ation. This is re uired for
M systemswhere netperf cannot determine the number of proc-
essors programmatically. tisnotneededon — 10. .[De-
fault: 1 processor]

The value passed with this option will be used as an offset from
the alignment specified with the —a option. ith this option you
could, for e ample, pass buffers to the system that began bytes
after the beginningofa K page —a 0 —o)[Default: 0by-
tes]

This option behaves ust like the —o option but on the remote sys-
tem. tworks in con unction with the — option. [Default: 0 by-
tes]

ou should use this option when the netserver program will be
waiting at a port other than the default. This might be the case if
you run netserver as a standalone process rather than a child of
inetd.

f you do not want the test banner to be displayed, then use this
option with an argument of 0. n situation where this might be
useful would be where you repeat the same test configuration sev-
eral times and do not want the banners cluttering things up. [De-
fault: 1 — display test banners]

Netperf: Revision 2.1; Copyright © 1993-1995 Hewlett—Packard Company

22

Netperf: Revision 2.1; Copyright 1993-1995 Hewlett—Packard Company

$ netperf —t TCP_STREAM —H hpi srdq
TCP STREAM TEST to hpisrdg -
Recv Send Send

Socket Socket Message El apsed

Si ze Si ze Si ze Ti me Thr oughput
bytes bytes byt es secs. 10"6bi t s/ sec
8192 8192 8192 10. 00 7.14 4—m—o
$ netperf —t TCP_STREAM —H hpi srdqg — -s 16384 -S 16K —m 1K

TCP STREAM TEST to hpisrdq
Recv Send Send
Socket Socket Message El apsed

Si ze Size Size Ti e Thr oughput
bytes bytes byt es secs. 10"6bi t s/ sec
16384 16384 1024 10.01 7.32

by

: R ———
$ netperf —t TCP_STREAM —-H hpisrdq —P 0
8192 8192 8192 10. 00 8. 07

$ netperf -t TCP_STREAM -H hpisrdgq -P 0 -v 0 w——m
7.05

Netperf: Revision 2.1; Copyright 1993-1995 Hewlett—Packard Company

$./netperf —t UDP_STREAM
UDP UNI DI RECTI ONAL SEND TEST to | ocal host -

Socket Message El apsed Messages
Si ze Size Ti e Ckay Errors Thr oughput
byt es byt es secs # # 1076bi t s/ sec

9216 9216 9.99 10500 0 77. 47
9360 \ 9. 99 10314 \ 76. 10 \

.

$./netperf -t UDP_STREAM —f K

UDP UNI DI RECTI ONAL SEND TEST to | ocal host

Socket Message El apsed Messages

Si ze Size Ti e Ckay Errors Thr oughput

byt es byt es secs # # KByt es/ sec
9216 9216 10. 00 9822 0 8839. 06
9360 10. 00 9534 8579.88 -———

$./netperf —t UDP_STREAM —H hpindio — —-m 1472

UDP UNI DI RECTI ONAL SEND TEST to hpindio

Socket Message El apsed Messages

Si ze Size Ti e kay Errors Thr oughput

byt es byt es secs # # 1076bi t s/ sec
9216 1472 10. 00 7634 45525 8. 99
9360 10. 00 7572 T 8.92

Netperf: Revision 2.1; Copyright 1993-1995 Hewlett—Packard Company

$./netperf -t TCP_RR

TCP REQUEST/ RESPONSE TEST to | ocal host

Local /Renote

Socket Size Request Resp. El apsed Trans.

Send Recv Size Si ze Ti me Rat e

bytes Bytes bytes byt es secs. per sec

8192 8192 1 1 10. 00 1480.55 q—
8192 X 8192 \

$./netperf -t UDP_RR — —r 1024, 256 -

UDP REQUEST/ RESPONSE TEST to | ocal host
Local /Renote
Socket Size Request Resp. El apsed Trans.

Send Recv Si ze Si ze Ti me Rat e
bytes Bytes bytes byt es secs. per sec
9216 9360 1024 256 10. 00 1421. 35
9216 9360

A\

Netperf: Revision 2.1; Copyright 1993-1995 Hewlett—Packard Company

$./netperf -1 60 -t TCP_RR —H hpindio —-v 2

TCP REQUEST/ RESPONSE TEST to hpindio : histogram P R—

Local /Renote

Socket Size Request Resp.
Send Recv Si ze Si ze

bytes Bytes bytes byt es

8192 8192 1 1
8192 8192
Al i gnnent O fset

Local Renpte Local Renote
Send Recv Send Recv

8 0 0 0
Hi st ogram of request/response tinme
TENTH_MSEC : 0: 0:
UNI T_MSEC : 0: 45771:
TEN_MSEC : 0: 51:
HUNDRED_MSEC 0: 2:
UNI T_SEC : 0: 0:
TEN_SEC : 0: 0:
>100_SECS: 0
HI ST_TOTAL: 46770

Netperf: Revision 2.1; Copyright

El apsed Trans.
Ti me Rat e
secs. per sec
60. 00 779.55

0: 0: 0: 0: 0: 0:
582: 141: 42: 48: 48: 38:
8: 1: 1: 0: 0: 1:
0: 0: 0: 1: 0: 0:
0: 0: 0: 0: 0: 0:
0: 0: 0: 0: 0: 0:

1993-1995 Hewlett—Packard Company

=l

QRN

cococogo

Netperf: Revision 2.1; Copyright 1993-1995 Hewlett—Packard Company

Netperf: Revision 2.1; Copyright 1993-1995 Hewlett—Packard Company

Netperf: Revision 2.1; Copyright 1993-1995 Hewlett—Packard Company

Netperf: Revision 2.1; Copyright 1993-1995 Hewlett—Packard Company

Netperf: Revision 2.1; Copyright 1993-1995 Hewlett—Packard Company

Netperf: Revision 2.1; Copyright 1993-1995 Hewlett—Packard Company

Netperf: Revision 2.1; Copyright 1993-1995 Hewlett—Packard Company

Netperf: Revision 2.1; Copyright 1993-1995 Hewlett—Packard Company

